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Confidence Intervals of Fit Indexes by Inverting a
Bootstrap Test

Chuchu Cheng and Hao Wu
Boston College

Fit indexes are an important tool in the evaluation of model fit in structural equation modeling
(SEM). Currently, the newest confidence interval (CI) for fit indexes proposed by Zhang and
Savalei (2016) is based on the quantiles of a bootstrap sampling distribution at a single level
of misspecification. This method, despite a great improvement over naive and model-based
bootstrap methods, still suffers from unsatisfactory coverage. In this work, we propose a new
method of constructing bootstrap CIs for various fit indexes. This method directly inverts a
bootstrap test and produces a CI that involves levels of misspecification that would not be
rejected in a bootstrap test. Similar in rationale to a parametric CI of root mean square error of
approximation (RMSEA) based on a noncentral χ2 distribution and a profile-likelihood CI of
model parameters, this approach is shown to have better performance than the approach of
Zhang and Savalei (2016), with more accurate coverage and more efficient widths.

Keywords: bootstrap, fit indexes, likelihood-based CI, structural equation modeling

In structural equation modeling (SEM), fit indexes provide
useful information about the quality of the model and have
been widely used in model evaluation. In this article, we
consider four fit indexes: root mean square error of approx-
imation (RMSEA; Browne & Cudeck, 1992; Steiger, 1990;
Steiger & Lind, 1980), comparative fit index (CFI; Bentler,
1990; McDonald & Marsh, 1990), goodness-of-fit index
(GFI; Jöreskog & Sörbom, 1986), and standardized root
mean square residual (SRMR; Bentler, 1995). With these
four indexes, the method proposed in this article can be
extended to other fit indexes that are functions of them,
such as the adjusted goodness-of-fit index (AGFI,
Jöreskog & Sörbom, 1986; Maiti & Mukherjee, 1990) and
the Tucker–Lewis index (TLI) (Bentler & Bonett, 1980;
Tucker & Lewis, 1973).

The confidence intervals (CIs) of fit indexes are very
informative about the estimation of the model fit, especially
for the test of close fit. Because the sample point estimate of
a fit index is affected by sampling error, a CI would be

helpful in quantifying the range of its plausible population
values. With CIs of fit indexes, hypothesis testing about fit
indexes can be conducted. For example, if the entire range
of CI is outside the range of close fit, close fit is rejected; if
inside the range, close fit can be established. Unfortunately,
many fit indexes such as GFI, CFI, SRMR are not provided
with a CI in most software because their analytic asymptotic
sampling distributions are generally unknown (but see
Ogasawara, 2001, for a CI based on higher order approx-
imation). Although the CI of RMSEA is widely used and
provided in most software, it is based on asymptotic theory
with the normal assumption of data and might not be accu-
rate under nonnormal distributions or with small sample
sizes. In this context, nonparametric bootstrap (Beran &
Srivastava, 1985; Efron, 1992) is a promising method for
interval estimation of fit indexes (Bollen & Stine, 1992),
because it only has mild requirements for sample size and
does not make distribution assumptions.

Most recently, Zhang and Savalei (2016) proposed a
bootstrap CI for fit indexes. Compared with naive bootstrap,
an approach that uses the sampling distribution bootstrapped
from the original data, Zhang and Savalei’s method uses a
sampling distribution bootstrapped from a transformed sam-
ple proposed by Yuan, Hayashi, and Yanagihara (2007). The
quantiles of this bootstrap sampling distribution are used as
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the CI. This bootstrap method improves on naive bootstrap
by adjusting an upward bias in the misspecification of the
bootstrap samples. CIs constructed using this method have
also been shown to perform better than the naive bootstrap
CIs when the degrees of freedom (df) of the fitted model are
large. However, the coverage rates are still not accurate
enough to the desired level. The coverage of all four fit
indexes still deviates significantly from the nominal level:
The coverage of 95% CIs for RMSEA and CFI could be as
small as 0.900 and as large as 0.985; for GFI and SRMR,
there are conditions with zero coverage due to the bias in
their sample estimates. In addition, only the overall cover-
age rates of CIs were discussed in their paper, but it is not
known whether the CIs were balanced.

In this article, we propose a newmethod to construct CIs for
fit indexes. Also based on the Yuan, Hayashi, and Yanagihara
(2007) transformation, our method transforms the observed
data to different levels of population misspecification and per-
forms a bootstrap test at each level. Because a CI is the set of
null values that will not be rejected in a test, our new method
searches for levels of population misspecification that retain
the null hypothesis in a bootstrap test. Then these levels are
transformed to form the CI of different fit indexes. The new
method, the bootstrap-test-based method, is predicted to per-
form better, given this relationship between test and CI.

This article is organized as follows. First, we review the fit
indexes (RMSEA, CFI, GFI, and SRMR) considered in the
study and different types of CIs, including normal theory CI,
Wald-type CI, and likelihood-based CI. Second, we explain
different nonparametric bootstrap approaches for fit indexes:
the basic idea of bootstrap, a brief review of naive bootstrap
and model-based bootstrap, Yuan, Hayashi, and Yanaginara
transformation, and Zhang and Savalei’s method. Then, we
introduce our new method, explain the logic, and present an
algorithm. Next, we report simulation studies that compare
Zhang and Savalei’s method and the new method. Finally, we
conclude our findings and discuss future directions.

FIT INDEXES

Let p be the number of manifest variables, Σ� be the p� p
true population covariance matrix, θ be the vector of model
parameters, and ΣðθÞ be the hypothesized covariance struc-
ture. The population maximum likelihood (ML) discrepancy
function is defined by:

FðΣ�;ΣðθÞÞ ¼ � ln Σ�Σ�1ðθÞ�� ��þ trðΣ�Σ�1ðθÞÞ � p:

(1)

Let θ0 be the minimizer of the population discrepancy
function, Σ0 be the model-implied covariance matrix
Σ0 ¼ Σðθ0Þ, and F0 be the minimum of the function. Then
we have F0 ¼ FðΣ�;Σ0Þ.

Let S be the sample covariance matrix. The sample ML
discrepancy function is given by:

FðS;ΣðθÞÞ ¼ � ln SΣ�1ðθÞÞ�� ��þ trðSΣ�1ðθÞÞ � p: (2)

Let n be the sample size, θ̂ be the minimizer of the sample
discrepancy function, and Σ̂ be the model-implied covariance
matrix Σ̂ ¼ Σðθ̂Þ. The minimum of F is given by F̂ ¼ FðS; Σ̂Þ
and the test statistic is defined as T ¼ ðn� 1ÞF̂. T is asympto-
tically distributed as noncentral chi-square with noncentrality
parameter λ ¼ ðn� 1ÞF0 under the convenient but unrealistic
assumption of a sequence of local alternatives (Shapiro, 1983),
also known as the Pitman drift assumption (McManus, 1991).

The population RMSEA and its sample estimate are
defined as:

RMSEA0 ¼
ffiffiffiffiffi
F0

df

s
; (3)

RMSEA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F̂

df
� 1

n� 1

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ̂n

ðn� 1Þdf

s
; (4)

where λ̂n is the noncentrality parameter estimated from the
sample: λ̂n ¼ ðT � df Þ, and λ̂n needs to be nonnegative.

The population and sample definitions of the ML-based
CFI are given by:

CFI0 ¼ 1� F0

F0;B
; (5)

CFI ¼ 1� F̂ � df
n�1

F̂B � dfB
n�1

¼ 1� λ̂n
λ̂n;B

; (6)

where F0;B and F̂B are the population and sample ML
discrepancy function values for the baseline model; λ̂n;B is
the estimated noncentrality parameter of the baseline
model, λ̂n;B ¼ ðn� 1ÞF̂B � dfB; and λ̂n;B, needs to be
nonnegative.

The ML-based GFI has the following population defini-
tion and sample estimate:

GFI0 ¼ 1�
tr ðΣ�1

0 Σ� � IÞ2
n o
tr ðΣ�1

0 Σ�Þ2
n o ; (7)

GFI ¼ 1�
tr ðΣ̂�1

S� IÞ2
� �

tr ðΣ̂�1
SÞ2

� � : (8)
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Finally, the population SRMR and its sample estimate are
defined as:

SRMR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

pðpþ 1Þ
Xp
i¼1

Xi

j¼1

ðσ�ij � σ0;ijÞ2
σ�iiσ�jj

vuut ; (9)

SRMRn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

pðpþ 1Þ
Xp
i¼1

Xi

j¼1

ðsij � σ̂ijÞ2
siisjj

vuut ; (10)

where σ�ij; σ0;ij; sij; σ̂ij are elements of Σ�;Σ0; S, and Σ̂,
respectively. For the models considered in our simulation
studies, the correspondent diagonal elements of S and Σ̂ are
identical. The preceding equation therefore computes the
root mean square residual of the correlations.

DIFFERENT METHODS TO CONSTRUCT CI

Parametric Methods

In SEM, there are two widely used methods to construct
parametric CIs for model parameters: likelihood-based CI
and Wald-type CI. A Wald-type CI is constructed using the
estimated standard error of the parameter estimate and quan-
tiles from a normal distribution. To construct a Wald-type CI
of parameter θ, one simply uses the formula: estimate �
critical value � standard error of estimate. The 95% Wald-
type CI of θ is θ̂ � 1:96ŜEθ̂.

A likelihood-based CI includes all parameter values that
will not be rejected in a likelihood ratio test (LRT; Meeker
& Escobar, 1995; Neale & Miller, 1997; Pek & Wu, 2015;
Venzon & Moolgavkar, 1988; Wu & Neale, 2012). The
likelihood-based CI of θ is constructed by inverting an
LRT of the null hypothesis: θ ¼ θ0, for a given θ0. In the
context of SEM, if we denote the parameter of interest by θ,
the other parameters by η, then the discrepancy function can
be written as FðS;Σðθ; ηÞÞ and the LRT statistic as

G2 ¼ FðS;Σðθ0; ~ηÞÞ � FðS;Σðθ̂; η̂ÞÞ, where ~η is the max-
imum likelihood estimate (MLE) under the null hypothesis
and ðθ̂; η̂Þ is the MLE under the alternative hypothesis. G2

follows an asymptotic χ2 distribution with 1 df under the
null hypothesis. A 100ð1� αÞ% likelihood-based CI is con-
structed by searching for values of θ0 such that the test
statistic G2 � χ21;α. The two values that make the LRT just
significant (G2 ¼ χ21;α) are the lower and upper limits of the
CI. When parameter estimate θ̂ is not close to normally
distributed, the profile likelihood-based CI has better perfor-
mance than Wald-type CI in terms of coverage. They also
enjoy the desired property of invariance to transformation
(Cheung, 2009; Pek & Wu, 2015).

For fit indexes, the most widely used and reported is the
normal theory CI of RMSEA. It is an inversion of the chi-
square test of fit based on noncentral chi-square distribution
(Browne & Cudeck, 1992; Steiger, 2016; see Wu & Browne,
2015a, 2015b, 2016 for a central chi-square based formula-
tion). To be specific, the normal theory CI is constructed by
searching for the values of F0 that make the chi-square test just
significant, that is, T ¼ χ2df ;1�α=2ððn� 1ÞF0Þ or
χ2df ;α=2ððn� 1ÞF0Þ. Then these two values are used as lower
and upper bounds of CI for F0. The CI of RMSEA is obtained
by transforming the values of F0 back to RMSEA. The CI for
the expected cross-validation index (ECVI; Browne &
Cudeck, 1989), which is also a function of F0, can also be
obtained from the CI for F0. ECVI evaluates the performance
of a calibrated model to predict future samples. Its sample
estimate is a scaled version of Akaike’s information criterion
(AIC; Akaike, 1998), a widely used model selection criterion.
The model selection uncertainty in SEM due to the sampling
variability of model selection criteria was discussed by
Preacher and Merkle (2012). Similar to likelihood-based CI,
a range of population values are searched based on the sam-
pling distribution of T at those population values to produce a
CI, but the standard error of F̂ is not used. It has been widely
reported that this normal theory CI has good performance for
the range of misspecifications that are practically acceptable
(Chun & Shapiro, 2009; Yuan, Hayashi, & Bentler, 2007).

Nonparametric Bootstrap

Parametric methods are based on distributional assumptions
and asymptotic theory. In reality, the distribution of the data
does not necessarily follow this assumption and the sample
size might not be large enough. In addition, the distributions
of most fit indexes other than RMSEA are unknown. In
these situations, nonparametric bootstrap can prove to be an
ideal method.

In general, the nonparametric bootstrap method starts by
drawing independent samples of size n, with replacement,
from the original sample (Efron & Tibshirani, 1994). We call
the original sample parent population. The additional samples
generated with replacement are called bootstrap samples. The
statistic of interest is further computed in each of these sam-
ples. The empirical distribution of the statistics calculated from
these samples is used to approximate the shape of the true
sampling distribution. This methodology has been applied to
SEM for constructing CIs for model parameters (Bollen &
Stine, 1992; Kim & Millsap, 2014; Nevitt & Hancock, 2001;
Yung & Bentler, 1996).

Traditional bootstrap methods include naive bootstrap and
model-based bootstrap. The naive bootstrap defines the parent
population to be the original data set. It has been proved to
perform well in obtaining CIs for SEM parameters (Enders,
2001; Nevitt & Hancock, 2001; Yuan & Hayashi, 2006; Yung
& Bentler, 1996). It is not appropriate for fit indexes, however,
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because the misfit of the parent population is usually larger than
the misfit of the true population. For example, even when the
true population fits the model perfectly, this parent population as
the current sample is alwaysmisspecified. As a result, fit indexes
estimated from naive bootstrap always overestimate their true
population values (Bollen & Stine, 1992).

The model-based bootstrap transforms the original data
such that the hypothesized covariance structure holds
exactly true in the transformed data (Beran & Srivastava,
1985; Bollen & Stine, 1992; Savalei & Yuan, 2009; Yung &
Bentler, 1996) before they are used as a parent population
for bootstrap. It transforms the original data yi as follows:

zi ¼ Σ̂
1=2

S�1=2yi: (11)

This method is not appropriate for fit indexes as well, for it
removes misfit entirely from the parent population.

Yuan, Hayashi, and Yanagihara transformation.
Yuan, Hayashi, & Yanagihara (2007) proposed a method that
transforms the original data to parent populations with differ-
ent levels of misfit, and produces covariance matrices of the
parent population that fall between S (covariance of original
data set) and Σ̂ (fitted covariance matrix). In particular, they
defined a series of target covariance matrices Sa for the parent
population that have the form:

Sa ¼ aSþ ð1� aÞΣ̂; (12)

where a is a constant between 0 and 1.
They have shown that the model-implied covariance

matrix produced by fitting Sa is Σ̂, and that the level of
misspecification monotonically increases with a in the range
of ð0; 1Þ. This method has been implemented in the R
package lavaan (Rosseel, 2012) by Merkle for his work
(Preacher & Merkle, 2012).

Yuan, Hayashi, and Yanagihara (2007) provided an itera-
tive algorithm for solving a for any given level of misspe-
cification between 0 and F̂. Once a is found, Sa is
computed, and the original data yi are rotated to the trans-
formed data xi as follows:

xi ¼ S1=2a S�1=2yi (13)

and can be used for bootstrap.

Zhang and Savalei’s method. Zhang and Savalei
(2016) proposed the newest method of bootstrap CI for fit
indexes. In this method, a covariance matrix Sa is first con-
structed using Yuan, Hayashi, and Yanagihara (2007) transfor-
mation such that its population discrepancy function value

FðSa; Σ̂Þ equals the bias-adjusted estimate from the sample

F̂ � df
n�1 :

F̂a ¼ FðSa; Σ̂Þ ¼ F̂ � df

n� 1
(14)

Second, the original data set yi is transformed using
Equation 13. The resultant data are used as a parent popula-
tion with a level of misspecification of FðSa; Σ̂Þ. With this
parent population, the bootstrap sampling distribution of a
fit index is obtained. Next, a CI is constructed with percen-
tiles 100ð1� α=2Þ and 100α=2 of the bootstrap sampling
distribution.

Because Zhang and Savalei’s method uses the quantiles
of a single bootstrap sampling distribution, it is expected to
have similar limitations of a Wald-type CI and might not
perform well when the sampling distribution of the fit index
has a bias or changes quickly.

Bootstrap-test-based CI. In this article, we propose
a new method that is comparable to a likelihood-based CI
or a normal theory CI. It searches for a range of levels of
misfit that will not be rejected in a bootstrap test based on
the test statistic T. It is only different from the normal
theory CI in that the new method uses bootstrap sampling
distributions of the test statistic instead of the noncentral χ2

sampling distribution under normal theory. Because of the
advantages of likelihood-based CIs over Wald-type CIs,
we expect that the new method has a better performance
in estimating CIs of fit indexes. The details of the new
method are explained next.

METHOD

We propose a new method to calculate the CI of fit indexes.
In this new method, instead of using quantiles of one single
bootstrap sampling distribution, we search for the range of
misspecification such that the bootstrap test retains the null
hypothesis. The logic of this method is explained next. First,
the sample covariance matrix S and fitted covariance matrix

Σ̂ of the data are obtained. Then for a given constant a, a
covariance matrix Sa can be constructed using Equation 12.
A bootstrap test can be performed using the bootstrap sam-
pling distributions of T constructed based on the trans-
formed data set defined by Equation 13. When the value
of a changes, the corresponding bootstrap sampling distri-
bution and its quantiles also change. We search for the
values of a such that this bootstrap test retains the null
hypothesis. The detailed algorithm is presented next.

Algorithm

1. Obtain test statistic T and Σ̂. Given the original data
set, the covariance matrix S is calculated and fitted to
the model to obtain test statistic T and Σ̂.

BOOTSTRAP CI FOR FIT INDEXES 873



2. For a given constant a, construct Sa. Following Yuan,
Hayashi, and Yanagihara (2007) transformation, a
covariance matrix Sa can be constructed using S and

Σ̂ through Equation 12, where a is a positive constant.
Note that the value of a will be determined later.

3. Transform the data. The original data are transformed
using Equation 13 and the resultant data are used as
the parent population for bootstrap. The covariance
matrix in this parent population is Sa.

4. Take bootstrap samples. B bootstrap samples are gen-
erated with replacement independently from these
transformed data. Then we fit the model to each boot-
strap sample and obtain test statistics T̂b
(b ¼ 1; 2; 3; :::;B). These test statistics from the boot-
strap samples form a bootstrap sampling distribution.

5. Perform a bootstrap test. For a given bootstrap sam-
pling distribution, we compare the observed test sta-
tistic T from the original data set with percentiles
100ð1� α=2Þ and 100α=2 of the bootstrap sampling
distribution. If the observed T is within this region,
we fail to reject the null hypothesis; if T is outside this
region, we reject the null hypothesis.

6. Construct CIs for a. For the lower limit of this CI, search
for a such that percentile 100ð1� α=2Þ of the bootstrap
sampling distribution equals to the observed statistic T,
which makes the bootstrap test just significant. For the
upper limit of a, we compare T to percentile 100α=2.
These two a values are the upper and lower limits of a
CI for a.

7. Construct CIs for fit indexes. Once the upper and lower
limits of CI for a are found, we can construct two covar-
iance matrices Sa;l and Sa;u using those two values. Then
the fit indexes RMSEA, CFI, GFI, and SRMR are calcu-
lated as the upper and lower limits of the CIs based on Sa;l
and Sa;u, using Equations 3, 5, 7, and 9.We can transform
the CI for a to form CIs for different fit indexes because it
is proved in the Appendix that the fit indexes monotoni-
cally change with a under mild conditions.

Algorithm Efficiency

The following details are designed to improve the efficiency
of the algorithm.

In the bootstrap step, we generated a single set of boot-
strap samples from the original data set and then trans-
formed it under different levels of a. If we draw bootstrap
samples independently for each value of a, it would cost
more time and the bootstrap sampling error would affect the
convergence of the search for a.

By only bootstrapping a single set of samples and using
different a values to further transform them, the algorithm is
more efficient and stable.

To search for the desired values of a more efficiently,
proper search bounds and starting values are needed. To
find these values, the normal theory CI (Fl, Fu) and the
bias-adjusted discrepancy value F̂0 ¼ F̂ � df

n�1 are obtained.
These discrepancy function values are then transformed to
values of a (al, au,a0) using the Newton–Raphson algorithm
provided by Yuan, Hayashi, and Yanagihara (2007), which is
now available in lavaan. The values of a corresponding to the
normal theory CI can serve as starting values of the search.
The value a0 used in Zhang and Savalei’s (2016) method can
be used as a bound for the search.

To perform the bootstrap, we modified the function
bootstrapLavaan() of lavaan package (Rosseel, 2012) of R
(R Core Team, 2016). Additional functions to find the
quantiles of the bootstrap distribution and to search for the
a parameter have been written. See Supplementary
Materials1 for details.

SIMULATION

Design

A simulation study was conducted to evaluate empirically the
performance of the new method. We used a confirmatory factor
analysis (CFA) model with two factors and three indicators for
each factor. Four representative models of misspecification con-
ditionswere examined in this study: truemodel (TM) conditions,
correlated residuals (CR) conditions, cross-loading (CL) condi-
tions, and wrong model (WM) conditions. These model condi-
tionswere selected to represent a range of population values offit
indexes meaningful in practice and were also similar in con-
struction to the simulation design of Zhang and Savalei (2016).
Details of these conditions are described in the next paragraph.
The sample size was set to have three levels of 100, 200, and
500. In addition to the new method, our simulation study also
included Zhang and Savalei’s method for comparison.

In the TM conditions, the true model contained a correla-
tion of .3 between two factors (the between-factor correla-
tion is the same for CR and CL conditions) and the loadings
for all indicators are .5 or .7; the fitted model is the same
CFA model with free parameters. In the CR conditions, the
true model had loadings of .7 for all indicators and con-
tained one pair of correlated residuals, with correlation of .2,
.3 or .4. This correlation is either within factor (CR-WF) or
between factors (CR-CF), where WF means that the correla-
tion is between items loaded on the same factor and CF
means the correlation is between items loaded on different
factors. In the CL conditions, the true model had loadings of
.7 for all indicators and contained one cross-loading of .4. In
both CR and CL conditions, the fitted model does not have
correlated residual or cross-loading. In the WM conditions,

1 Supplementary materials can be found at https://github.com/chuchu
cheng/Bootstrap-Test-Based-CI
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the true model had a between-factor correlation of .5 or .7,
and the loadings for all indicators are .5; the fitted model
only contained one factor. We chose these true values in the
four conditions such that the RMSEA and CFI population
values are in a practically meaningful range.

The fit indexes used in this simulation study are RMSEA,
CFI, GFI, and SRMR. A 90% CI was constructed for each
fit index under different conditions. The distribution of the
sample data is multivariate normal. For each condition, we
simulated 1,000 data sets, and for each data set, 1,000
bootstrap samples were used to obtain the bootstrap sam-
pling distributions.

For each fit index, the coverage rate and mean widths were
calculated. The coverage rate is the proportion of bootstrapped
CIs that contained the true population value of the fit index,
which captures the accuracy. In addition, to evaluate whether
the CIs are balanced or not, we also separately calculate the
coverage of the lower and upper limits of these 90% CIs as
95% lower and upper confidence bounds (CBs). As explained
in the method, the CIs for fit indexes were all transformed from
the CI for a, so they had the same coverage rate. The mean
width is the average width of the bootstrap CIs, which captures
efficiency of this method.

Results

Detailed results of eleven conditions are summarized in this
section. Among them, three conditions correspond to corre-
lated residuals cross-factors (CR-CF), three conditions are for
correlated residuals within factor (CR-WF), one condition
corresponds to cross-loading (CL), two conditions correspond
to the true model (TM), and two conditions are for the wrong
model (WM).

Table 1 andFigure 1 showcoverage rates of the 90%CIs offit
indexes under the bootstrap-test-based method and Zhang and
Savalei’s (2016) method for all conditions. For the bootstrap-
test-based method, because we obtained the CIs for fit indexes
by transforming the CIs for a, the coverage rates of CIs for all fit
indexes are the same.

Compared with Zhang and Savalei’s (2016) method, the
coverage rate of the bootstrap-test-based method is closer to
the nominal level of .95 on each CB, and the coverage of the
CI is closer to the nominal level of .90. Specifically, for the
bootstrap-test-based method, the overall coverage rate has a
mean of .904, lower bound coverage rate has a mean of .952,
and the upper bound coverage also has a mean of .952. For
Zhang and Savalei’s method, the mean overall coverage rates of
RMSEA, CFI, GFI, and SRMR are .935, .940, .390, and .385,
respectively; the mean lower bound coverage rates are .970,
.965, .994, and .410, respectively; the mean upper bound cover-
age rates are .965, .975, .397, and .993, respectively.

The deviations of CI coverage rates from the nominal
level are smaller in the bootstrap-test-based method. As
shown in Table 1, the deviation of overall coverage rate
from 0.90 under the bootstrap-test-based method ranges

from .002 to .031 with a mean difference of .011. In
Zhang and Savalei’s (2016) method, the deviation of overall
coverage rate ranges from .011 to .123 with a mean differ-
ence of .060 for RMSEA, from .007 to .087 with a mean of
.057 for CFI, from .003 to .900 with a mean of .510 for GFI,
and from .013 to .900 with a mean of .518 for SRMR.

We also note that the coverage rates of CIs under the
bootstrap-test-based method are generally more balanced
than those of Zhang and Savalei’s (2016) method. The
lower bound coverage rates and upper bound coverage
rates are both closer to .95 in the bootstrap-test-based
method; however, in Zhang and Savalei’s method, for
many conditions, the coverage rate of one bound is close
to 1, but the coverage rate of the other bound is below .90
and even could be close to 0.

In addition, as shown in Table 2 and Figure 2, themeanwidth
of the CIs for RMSEA and CFI under the bootstrap-test-based
method is generally smaller than or approximately the same as
Zhang and Savalei’s (2016) method. For RMSEA, the mean
widths of CIs under the bootstrap-test-based method are nar-
rower in 21 conditions, wider in 10 conditions, and the same in 2
conditions; for CFI, the mean widths of the CIs under the boot-
strap-test-basedmethod are narrower in 30 conditions and wider
in 3 conditions. We did not notice great difference of mean
widths between the two methods for GFI and SRMR, and the
mean widths under Zhang and Savalei’s method are better than
the bootstrap-test-based method for some conditions. However,
the coverage rates for GFI and SRMR are generally not satisfac-
tory under Zhang and Savalei’s method, so the advantage of
mean widths is not meaningful in this situation.

In summary, our simulation study shows that the CIs of
the bootstrap-test-based method are substantially better than
those for the Zhang and Savalei (2016) method in general,
with more accurate and balanced coverage rates. In addition,
for conditions where CIs from both methods have acceptable
coverage, the bootstrap-test-based method gives generally
shorter widths. This indicates that the bootstrap-test-based
method is more powerful.

SUMMARY AND CONCLUSION

In this article, we propose a new method for constructing CIs
for fit indexes using the bootstrap method. Our approach
directly inverts a bootstrap test by searching the levels of
misspecification (as measured by the a parameter of Yuan,
Hayashi, Yanigahara transformation) that make the bootstrap
test not significant. Specifically, for a given value of a, a
covariance matrix Sa is obtained and the observed data are
transformed so that their misfit as a parent population is Sa.
Using this parent population, a bootstrap test is performed with
test statistic T. By comparing the observed Tand the quantiles of
the bootstrap sampling distribution, the null hypothesis is
rejected or retained. The CI of a includes all values that are
not rejected in this bootstrap test. Because the fit indexes are
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generally monotonically related to a, their CIs can be directly
calculated from the CI of a.

The new method, the bootstrap-test-based method, is theore-
tically predicted to perform better than Zhang and Savalei’s
(2016) method, which uses the quantiles of a single bootstrap
sampling distribution to construct CI and is comparable to a
Wald-type CI in parametric statistics. The reason is that CIs
based on inverting the distribution of the test statistic has been
shown to have better performance than Wald-type CIs (Pek &
Wu, 2015). Especially, a Wald-type CI is based on the distribu-
tion of sample estimates of fit indexes that might overestimate

their population value, leading to biased results. To be specific,
Zhang and Savalei’s method has poor performance when con-
structing CIs for GFI and SRMR because their sample estimates
do not involve bias adjustment. Our method searches for levels
of population misfit directly and does not suffer from this
problem, so it is also predicted to provide particularly more
accurate bootstrap CIs for GFI and SRMR.

From the simulation results, the CIs for all four fit
indexes under the bootstrap-test-based method are more
accurate and efficient than Zhang and Savalei’s (2016)
method: Coverage rates of both CIs and CBs (the upper

TABLE 1
Coverage Rates of 90% Confidence Intervals and 95% Confidence Bounds by Bootstrap-Test-Based Method and Zhang and Savalei’s Method

PFI BTB Method Zhang RMSEA Zhang CFI Zhang GFI Zhang SRMR

Condition N RMSEA CFI GFI SRMR LB UB CI LB UB CI LB UB CI LB UB CI LB UB CI

CR-CF 100 .023 .984 .992 .020 .946 .970 .916 .974 1 .974 1 .975 .975 1 .044 .044 0 1 0
cr=.2 200 .953 .961 .914 .976 1 .976 1 .976 .976 1 .618 .618 .371 1 .371

500 .947 .951 .898 .967 .905 .872 .906 .965 .871 1 .813 .813 .672 1 .672
CR-CF 100 .052 .964 .983 .030 .940 .958 .898 .975 1 .975 .999 .978 .977 1 .596 .596 .426 1 .426
cr=.3 200 .956 .950 .906 .973 .903 .876 .900 .971 .871 1 .734 .734 .609 1 .609

500 .952 .955 .907 .965 .924 .889 .927 .966 .893 .981 .858 .839 .787 1 .787
CR-CF 100 .095 .936 .970 .040 .945 .953 .898 .969 .917 .886 .912 .967 .879 1 .728 .728 .596 1 .596
cr=.4 200 .954 .948 .902 .970 .911 .881 .903 .971 .874 .989 .846 .835 .755 1 .755

500 .944 .942 .886 .962 .916 .878 .912 .959 .871 .971 .869 .840 .816 .997 .813
CR-WF 100 .001 .999 1 .008 .958 .962 .920 .982 1 .982 1 .978 .978 1 0 0 0 1 0
cr=.2 200 .951 .962 .913 .981 1 .981 1 .981 .981 1 0 0 0 1 0

500 .936 .949 .885 .976 1 .976 1 .977 .977 1 0 0 0 1 0
CR-WF 100 .003 .998 .999 .012 .964 .967 .931 .985 1 .985 1 .985 .985 1 0 0 0 1 0
cr=.3 200 .961 .952 .913 .981 1 .981 1 .981 .981 1 0 0 0 1 0

500 .949 .961 .910 .976 1 .976 1 .977 .977 1 0 0 .533 1 .533
CR-WF 100 .004 .998 .999 .015 .958 .967 .925 .979 1 .979 1 .980 .980 1 0 0 0 1 0
cr=.4 200 .940 .958 .898 .968 1 .968 1 .970 .970 1 0 0 .001 1 .001

500 .952 .959 .911 .982 1 .982 1 .979 .979 1 0 0 .944 1 .944
CL 100 .106 .944 .964 .061 .939 .945 .884 .961 .903 .864 .937 .939 .876 1 .794 .794 .901 .978 .879
cl=.4 200 .950 .942 .892 .971 .913 .884 .936 .957 .893 .971 .873 .844 .936 .939 .875

500 .944 .941 .885 .956 .923 .879 .945 .937 .882 .958 .909 .867 .939 .940 .879
TM 100 0 1 1 0 .956 .967 .923 .777 1 .777 1 .981 .981 1 0 0 0 1 0
l=.7 200 .948 .954 .902 .978 1 .978 1 .979 .979 1 0 0 0 1 0

500 .958 .950 .908 .981 1 .981 1 .982 .982 1 0 0 0 1 0
TM 100 0 1 1 0 .958 .951 .909 .985 1 .985 1 .985 .985 1 0 0 0 1 0
l=.5 200 .960 .942 .902 .988 1 .988 1 .987 .987 1 0 0 0 1 0

500 .948 .950 .898 .981 1 .981 1 .981 .981 1 0 0 0 1 0
WM 100 .071 .824 .973 .052 .972 .936 .908 .987 .981 .968 .922 .998 .920 1 .799 .799 .785 1 .785
fc=.5 200 .953 .924 .877 .987 .867 .854 .856 .994 .850 .977 .890 .867 .881 .974 .855

500 .954 .943 .897 .978 .895 .873 .900 .984 .884 .951 .946 .897 .933 .954 .887
WM 100 .029 .938 .989 .031 .951 .960 .911 .984 1 .984 1 .984 .984 1 .295 .295 .217 1 .217
fc=.7 200 .944 .951 .895 .975 1 .975 .982 .975 .957 1 .641 .641 .608 1 .608

500 .961 .949 .910 .975 .899 .874 .902 .974 .876 .992 .840 .832 .806 .994 .211
Mean Coverage .952 .952 .904 .970 .965 .935 .965 .975 .940 .994 .397 .390 .410 .993 .385
Max Deviation from Nominal .022 .026 .031 .173 .083 .123 .094 .048 .087 .050 .950 .900 .950 .050 .900
Min Deviation from Nominal .000 .000 .002 .006 .026 .011 .005 .007 .007 .001 .004 .003 .006 .004 .013
Mean Deviation from Nominal .006 .008 .011 .030 .047 .060 .045 .026 .057 .044 .553 .510 .540 .044 .518

Note. BTB method = bootstrap-test-based method. Since the CIs for fit indices by BTB method were all transformed from the CI for a, they had the same
coverage rate.

PFI=Population fit index value. LB=lower bound; UB=upper bound; CI=confidence interval. CR-CF=correlated residual cross factors; CR-WF=correlated
residual within factors. CL=cross loading. TM=true model. WM=wrong model. cr=correlated residual. cl=cross loading. l=factor loading. fc=factor correlation.

Factor loadings are .7 for all CF, WF, CL conditions. For TM, factor loading is .5 or .7. For WM, factor loading is .5.

876 CHENG AND WU



and lower limits of CI) constructed by the bootstrap test-
based method are closer to their nominal levels; the CIs are
also narrower when the coverage rates were satisfactory for
both methods. In particular, our method does not suffer the
zero or unity coverages frequently present in Zhang and
Savalei’s method. These results confirmed our predictions.

Similar to Zhang and Savalei’s (2016) study, we only
considered normally distributed data in this article, because
the definitions of fit indexes could still be controversial
(Brosseau-Liard, Savalei, & Li, 2012; Yuan, 2005; Yuan &
Marshall, 2004). However, the bootstrap-test-based method
can be generalized to nonnormal data if the same definitions
of fit indexes are used. For other definitions of fit indexes
under conditions of nonnormal distribution, one first needs
to establish that the fit indexes increase monotonically with
the value of a. This line of research will be considered in the
future.

The bootstrap-test-based method, when applied to CFI,
could be restrictive: It only works for covariance structures
that satisfy diagðΣ̂Þ ¼ diagðSÞ. Although a large class of mod-
els satisfy this condition (see the comments at the end of the
Appendix), structural equation models with a non-saturated
factor correlation matrix do not. This restriction excludes most
models for longitudinal data, such as latent growth curve
models. Constructing bootstrap CIs for CFI in more general
conditions could be investigated in the future.

This method only applies to data without missing values.
With missing data, the bootstrap procedures could be more
complicated (Savalei & Yuan, 2009), even for the test of
exact fit. How to properly transform a data set with missing
values to obtain different levels of misspecification will be
the pivotal problem in the extension of this method to data
with missing values. This is beyond the scope of this article,
but could be an interesting topic for future research.

FIGURE 1 Coverage Rates of 90% Cis and 95% CBs by BTB Method and Zhang and Savalei’s Method. Note. The sample size is N = lOO. CB = Confidence
Bounds, upper and lower bounds of CI. BTB method = bootstrap test based method. The desired coverage rate of CI is 90%; the desired coverage rate of CB is 95%.
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TABLE 2
Mean Widths of 90% Bootstrap-Test-Based Method and Zhang and Savalei’s Method Confidence Intervals

BTB Method Zhang and Savalei’s Method

Condition N RMSEA CFI GFI SRMR RMSEA CFI GFI SRMR

CR-CF,cr=.2 100 0.150 0.093 0.045 0.054 0.178 0.150 0.050 0.048
200 0.085 0.056 0.027 0.040 0.094 0.066 0.029 0.034
500 0.049 0.034 0.016 0.026 0.049 0.034 0.015 0.022

CR-CF,cr=.3 100 0.180 0.111 0.053 0.056 0.199 0.134 0.055 0.049
200 0.120 0.076 0.036 0.039 0.120 0.081 0.035 0.035
500 0.071 0.047 0.022 0.022 0.070 0.048 0.021 0.023

CR-CF,cr=.4 100 0.236 0.136 0.066 0.057 0.234 0.151 0.062 0.051
200 0.154 0.093 0.045 0.036 0.150 0.098 0.042 0.036
500 0.093 0.057 0.027 0.020 0.092 0.061 0.027 0.023

CR-WF,cr=.2 100 0.110 0.066 0.034 0.050 0.159 0.103 0.046 0.047
200 0.055 0.035 0.018 0.035 0.077 0.051 0.024 0.033
500 0.024 0.015 0.008 0.023 0.031 0.021 0.010 0.021

CR-WF,cr=.3 100 0.110 0.062 0.034 0.050 0.159 0.097 0.046 0.048
200 0.056 0.034 0.018 0.036 0.077 0.048 0.024 0.033
500 0.026 0.016 0.008 0.025 0.032 0.020 0.010 0.021

CR-WF,cr=.4 100 0.155 0.061 0.035 0.051 0.162 0.093 0.046 0.049
200 0.060 0.034 0.019 0.038 0.080 0.047 0.025 0.034
500 0.027 0.016 0.009 0.027 0.033 0.019 0.011 0.022

CL,cl=.4 100 0.248 0.113 0.072 0.067 0.243 0.128 0.066 0.055
200 0.166 0.080 0.051 0.046 0.160 0.086 0.047 0.043
500 0.101 0.049 0.032 0.028 0.099 0.053 0.031 0.029

TM,l=.7 100 0.116 0.199 0.033 0.057 0.207 0.112 0.056 0.062
200 0.053 0.118 0.017 0.040 0.076 0.055 0.024 0.032
500 0.021 0.053 0.007 0.026 0.030 0.022 0.010 0.020

TM,l=.5 100 0.109 0.199 0.033 0.057 0.151 0.420 0.044 0.049
200 0.053 0.118 0.017 0.040 0.073 0.199 0.023 0.034
500 0.021 0.053 0.007 0.026 0.030 0.081 0.010 0.022

WM,fc=.5 100 0.210 0.328 0.065 0.076 0.207 0.491 0.059 0.052
200 0.143 0.256 0.048 0.055 0.132 0.295 0.042 0.040
500 0.087 0.169 0.031 0.033 0.082 0.188 0.028 0.029

WM,fc=.7 100 0.162 0.240 0.050 0.064 0.184 0.394 0.053 0.047
200 0.100 0.173 0.032 0.049 0.103 0.215 0.032 0.034
500 0.058 0.109 0.020 0.032 0.056 0.117 0.019 0.024

Note. BTB method = bootstrap-test-based method. PFI=Population fit index value. CF=correlated residual cross factors. WF=correlated residual within
factors. CL=cross loading. TM=true model. WM=wrong model. cr=correlated residual. cl=cross loading. l=factor loading. fc=factor correlation.

FIGURE 2 Mean Widths of 90% BTB Method and Zhang and Savalei’s Method Cis for RMSEA and CFI. Note. The sample size is N = lOO. BTB method =
bootstrap test based method. The Cis for GFI and SRMR are not included, because the CI coverage rates of them under Zhang and Savalei’s method are
generally not satisfactory.
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APPENDIX

In this appendix we establish the fact that the fit indexes used in this article
monotonically increase with the value of a under mild conditions.

Proposition 1

If S� Σ̂, then in the parent population with covariance matrix
Sa given by Equation 12,RMSEA strictly increases as a function
of a for its entire range; CFI strictly decreases as a function of a
if the following relationships are satisfied: diagðΣ̂Þ ¼ diagðSÞ,
trðΣ̂�1

SaÞ ¼ p and Σ̂ is not a diagonal matrix; GFI strictly
decreases as a function of a for covariance structures whoseML
estimate satisfies trðΣ̂�1

SaÞ ¼ p; SRMR strictly increases as a
function of a.

Proof. The discrepancy function value of the parent
population defined by Sa is

Fa ¼ FðSa; Σ̂Þ ¼ � ln Σ̂
�1
Sa

��� ���þ trðΣ̂�1
SaÞ � p: (A:1)

Let the eigenvalues of Σ̂
�1
S be λ1 � λ2 � λ3 � ::: � λp.

Yuan, Hayashi, and Yanagihara (2007) proved that for
0 � a � 1, Fa is a strictly increasing function of a. The
derivative of Fa as provided in Yuan et al.’s proof is

F
0
a ¼ a

Xp
i¼1

ðλi � 1Þ2
ð1� aÞ þ aλi

:

It can be easily observed that this is a positive function on
the full range of a for which Fa exists, which is
0 < a< 1

1�λ1
. Because RMSEA is strictly increasing with

F in the population, it is also strictly increasing with a.
The equation we used for CFI is

CFIa ¼ 1� Fa

FB;a
; (A:2)

where Fa is the discrepancy function value associated with
Sa and FB;a is the baseline discrepancy function value.
Because of the relationship trðΣ̂�1

SaÞ ¼ p, the discrepancy

function value is simplified as Fa ¼ � ln Σ̂
�1
Sa

��� ��� and the
baseline discrepancy function value is simplified as

FB;a ¼ � ln D̂
�1
Sa

��� ���.
If the model satisfies the relationship diagðΣ̂Þ ¼ diagðSÞ, the

null model estimate D̂ must satisfy

D̂ ¼ diagðSaÞ ¼ diagðΣ̂Þ ¼ diagðSÞ and does not depend on
a. The baseline discrepancy function value can be written as

FB;a ¼ � ln D̂
�1
Sa ¼ � lnj jD̂�1

Σ̂
��� ���� Fa, and as a result,

CFIa ¼ 1� Fa

FB;a
¼ 1� Fa

ln D̂
�1
Σ̂

��� ���þ Fa

:

Because Σ̂ is not a diagonal matrix, we have ln D̂
�1
Σ̂

��� ���<0,
so CFI strictly decreases with Fa and therefore with the
value of a.

Using the relationship trðΣ̂�1
SaÞ ¼ p, we can express

GFI as

GFIa ¼ 1�
tr ðΣ̂�1

SaÞ
2 � 2ðΣ̂�1

SaÞ þ I

� �

tr ðΣ̂�1
SaÞ

2
� �

¼ p

tr ðΣ̂�1
SaÞ

2
� � :

Now we only need to prove tr ðΣ̂�1
SaÞ

2
� �

is strictly increasing with a. Express

trðΣ̂�1
SaÞ2 ¼

Pp
i ðaλi þ 1� aÞ2 ¼ a2

Pp
i ðλi � 1Þ2 þ 1

and we see it is indeed the case.
For SRMR, we express

Xp
i¼1

Xi

j¼1

ðsðaÞij � σ̂ijÞ
2

sðaÞii sðaÞjj

¼
Xp
i¼1

Xi

j¼1

ðasij � aσ̂ijÞ2
½aðsii � σ̂iiÞ þ σ̂ii�½aðsjj � σ̂jjÞ þ σ̂jj�

¼
Xp
i¼1

Xi

j¼1

ðsij � σ̂ijÞ2
½ðsii � σ̂iiÞ þ σ̂ii=a�½ðsjj � σ̂jjÞ þ σ̂jj=a�

and see it is strictly increasing with a. Now we have prove
the proposition.

Although there are some restrictions in our proposition, these
restrictions are generally satisfied by a large class of models. In
fact, all exploratory factor analysis (EFA) models (Anderson,
2003, section 14.3.1) and CFA models where all fixed loadings
are zero and factor correlations and unique variances are free
parameters (Lawley & Maxwell, 1963, Exercise 7.3) satisfy the
relationship diagðΣ̂Þ ¼ diagðSÞ. As long as the covariance
structure is closed under scalar multiplications (for all C and θ,
there exists a θc that satisfies cΣðθÞ ¼ ΣðθcÞ), it satisfies

trðΣ̂�1
SaÞ ¼ p . This second condition is met by most models

in practice.
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